

Ifosfamide Injection IP
IFOWEM
1gm/2gm
Injection

Composition :

Each vial contains

Ifosfamide IP 1gm

Excipients q.s.

Composition :

Each vial contains

Ifosfamide IP 2gm

Excipients q.s.

Pharmacology

Ifosfamide is an antineoplastic, a cytotoxic alkylating agent. It is a prodrug and shows no in vitro cytotoxic activity until activated by microsomal enzymes. The cytotoxic activity of Ifosfamide (alkylation of the nucleophilic centres in the cells) is associated with the activated oxazaphosphorine ring hydroxylated at the C4 atom which interacts with DNA-DNA cross linking. This activity manifests itself by blocking the late S and early G2 phases of the cell cycle.

Ifosfamide is rapidly absorbed from the site of administration, activation of Ifosfamide is primarily in the liver by microsomal mixed function oxidases. Elimination of metabolised Ifosfamide is primarily via the kidneys. The serum half-life ranges between 4 - 8 hours depending on the dose and dosage regimen. Over 80% of a single dose of Ifosfamide was excreted in the urine within 24 hours. Approximately 80% of the dose was excreted as parent compound. Significant quantities of unchanged Ifosfamide were found in the cerebrospinal fluid consistent with the high lipid solubility of the drug.

Therapeutic indications

Ifosfamide is a cytotoxic drug for the treatment of malignant disease. As a single agent it has successfully produced objective remission in a wide range of malignant conditions. Ifosfamide is also frequently used in combination with other cytotoxic drugs, radiotherapy and surgery.

Pharmacology and method of administration

Ifosfamide should only be administered when there are facilities for regular monitoring of clinical, biochemical and haematological parameters before, during and after administration and under the direction of a specialist oncology service by physicians experienced with this drug.

Dosage must be individualised. Doses and duration of treatment and/or treatment intervals depend on the therapeutic indication, the scheme of a combination therapy, the patient's general state of health and organ function, and the results of laboratory monitoring.

Method of administration

A guide to the dosage regimens used for most indications is given below:

a) 8 - 12 g/m² equally fractionated as single daily doses over 3 - 5 days every 2 - 4 weeks.

b) 5 - 6 g/m² (maximum 10 g) given as a 24 hour infusion every 3 - 4 weeks.

The frequency of dosage is determined by the degree of myelosuppression and the time taken to recover adequate bone marrow function. The usual number of courses given is 4, but up to 7 (6 by 24 hour infusion) courses have been given. Re-treatment has been given following relapse.

During or immediately after administration, adequate amounts of fluid should be ingested or infused to force diuresis in order to reduce the risk of urothelial toxicity.

For prophylaxis of haemorrhagic cystitis, ifosfamide should be used in combination with mesna.

Use in Patients with Renal Impairment

In patients with renal impairment, particularly in those with severe renal impairment, decreased renal excretion may result in increased plasma levels of Ifosfamide and its metabolites. This may result in increased toxicity (e.g., neutrotoxicity, nephrotoxicity, haemotoxicity) and should be considered when determining the dosage in such patients. Ifosfamide and its metabolites are dialyzable.

Use in Patients with Hepatic Impairment

Hepatic impairment, particularly if severe, may be associated with decreased activation of Ifosfamide. This may alter the effectiveness of Ifosfamide treatment. Low serum albumin and hepatic impairment are also considered risk factors for the development of CNS toxicity. Hepatic impairment may increase the formation of a metabolite that is believed to cause or contribute to CNS toxicity and also contribute to nephrotoxicity. This should be considered when selecting the dose and interpreting response to the dose selected.

Use in Paediatric Patients

In children, the dosage and administration should be determined by the tumour type, tumour stage, the general condition of the patient, any previous cytotoxic therapy, and whether chemotherapy or radiotherapy is to be administered concurrently. Clinical trials have involved doses of:

a) 5 g/m² over 24 hours

b) 9 g/m² equally fractionated as single daily doses over 5 days

c) 9 g/m² as a continuous infusion over 72 hours repeated at three weekly intervals.

Use in Elderly Patients

In general, dose selection for an elderly patient should be cautious, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

Administration:

Ifosfamide is inert until activated by enzymes in the liver. However, safe handling is required and advice is included under Pharmaceutical Precautions. The dry contents of a vial should be dissolved in Water for Injections as follows:

1. dilute to less than a 4% solution in Sodium Chloride 0.9% and injected directly into the vein, with the patient supine.

2. infused in Sodium Chloride 0.9% over 30-120 mins.

3. injected directly into a fast-running infusion,

4. made up in 3 x 1 litres of Sodium Chloride 0.9% and infused over 24 hours. Each litre should be given over eight hours.

Care should be taken that extravasation does not take place, however, should it occur local tissue damage is unlikely and no specific measures need be taken. Repeated intravenous injections of large doses of Ifosfamide have resulted in local irritation.

Mesna should be used to prevent urothelial toxicity.

Where Ifosfamide is used as an i.v. bolus, increased dosages of mesna are recommended in children, patients whose urothelium may be damaged from previous therapies and those who are not adequately protected by the standard dose of mesna.

The patient should be well hydrated and maintained in fluid balance, replacement fluids being given as necessary to achieve this. The fluid intake of patients on the intermittent regimen should be at least 2 litres in 24 hours. As Ifosfamide may exert an antidiuretic effect, a diuretic may be necessary to ensure an adequate urinary output.

Urine should be sent for laboratory analysis before, and at the end of, each course of treatment, and the patient should be monitored for output and evidence of proteinuria and haematuria at regular intervals (4-hourly if possible) throughout the treatment period. The patient should be instructed to report any signs or symptoms of cystitis.

Ifosfamide should be avoided in patients with cystitis from any cause until it has been treated.

Antiemetics given before, during and after therapy may reduce nausea and vomiting. Oral hygiene is important.

In case of accidental paravenous administration of Ifosfamide, the infusion should be stopped immediately, the extravascular Ifosfamide solution should be aspirated with the cannula in place, and other measures should be instituted as appropriate.

Use in Patients with Renal Impairment

In patients with renal impairment, particularly in those with severe renal impairment, decreased renal excretion may result in increased plasma levels of Ifosfamide and its metabolites. This may result in increased toxicity (e.g., neutrotoxicity, nephrotoxicity, haemotoxicity) and should be considered when determining the dosage in such patients.

Use in Patients with Hepatic Impairment

Hepatic impairment, particularly if severe, may be associated with decreased activation of Ifosfamide. This may alter the effectiveness of Ifosfamide treatment. Low serum albumin and hepatic impairment are also considered risk factors for the development of CNS toxicity. Hepatic impairment may increase the formation of a metabolite that is believed to cause or contribute to CNS toxicity and also contribute to nephrotoxicity.

This should be considered when selecting the dose and interpreting response to the dose selected.

Interaction with other medicinal products and other forms of interaction

Planned co-administration or sequential administration of other substances or treatments that could increase the likelihood or severity of toxic effects (by means of pharmacodynamic or pharmacokinetic interactions) requires careful individual assessment of the expected benefit and the risks. Patients receiving such combinations must be monitored closely for signs of toxicity to permit timely intervention.

Patients being treated with Ifosfamide and agents that reduce its activation should be monitored for a potential reduction of therapeutic effectiveness and the need for dose adjustment.

Increased haematoxicity and/or immunosuppression may result from a combined effect of Ifosfamide and, for example:

- ACE inhibitors: ACE inhibitors can cause leukopenia.

- Carboplatin

- Cisplatin

- Natalizumab

Increased cardiotoxicity may result from a combined effect of Ifosfamide and, for example:

- Anthracyclines

- Irradiation of the cardiac region

Increased pulmonary toxicity may result from a combined effect of Ifosfamide and, for example:

- Amiodarone

- G-CSF, GM-CSF (granulocyte colony stimulating factor, granulocyte macrophage colony-stimulating factor)

Increased nephrotoxicity may result from a combined effect of Ifosfamide and, for example:

- Acylovin

- Aminoglycosides

- Amphoterin B

- Carboplatin

- Cisplatin

An increased risk of developing haemorrhagic cystitis may result from a combined effect of Ifosfamide and, for example:

- Busulfan

- Irradiation of the bladder

Additive CNS effects may result from a combined effect of Ifosfamide and, for example:

- Antiemetics

- Antihistamines

- Narcotics

- Sedatives

Other risk factors that have been demonstrated or discussed in the literature include:

- Renal dysfunction, elevated serum creatinine

- Low serum albumin

- Hepatic dysfunction

- Low bilirubin, low haemoglobin levels, decreased white blood cell count

- Acidosis, low serum bicarbonate

- Electrolyte imbalances, hypotenaemia and inappropriate ADH (vasopressin) secretion, low fluid intake

- Presence of brain metastases, prior CNS disease, brain irradiation

- Cerebral sclerosis, peripheral vasculopathy

- Presence of tumour in lower abdomen, bulky abdominal disease

- Poor performance status, advanced age

- Obesity, female gender

- Interactions with other medicines (e.g., aperient, CYP 3A4 inhibitors), alcohol, drug abuse, or pretreatment with cisplatin

If encephalopathy develops, administration of Ifosfamide should be discontinued.

Reports report both successful and unsuccessful use of methylene blue for the treatment and prophylaxis of Ifosfamide-associated encephalopathy.

Due to the potential for additive effects, drugs acting on the CNS (such as antiemetics, sedatives, narcotics, or antihistamines) must be used with particular caution or, if necessary, be discontinued in case of Ifosfamide induced encephalopathy.

Renal and Urothelial Toxicity

Ifosfamide is both nephrotoxic and urotoxic.

Glomerular and tubular kidney function must be evaluated and checked before commencement of therapy, as well as during and after treatment.

Close clinical monitoring of serum and urine chemistries, including phosphorus, potassium, and other laboratory parameters appropriate for identifying nephrotoxicity and urothelial toxicity is recommended, [Nephrotoxic Effects](#)

Fatal outcome from nephrotoxicity has been documented.

Disorders of renal function (glomerular and tubular) following Ifosfamide administration are very common.

Development of a syndrome resembling SIADH (syndrome of inappropriate antidiuretic hormone secretion) has been reported with Ifosfamide.

Tubular damage may become apparent during therapy, months or even years after cessation of treatment.

Glomerular or tubular dysfunction may resolve with time, remain stable, or progress over a period of months or years, even after completion of Ifosfamide treatment.

The risk of developing clinical manifestations of nephrotoxicity is increased with, for example:

- large cumulative doses of Ifosfamide

- pre-existing renal impairment

- prior or concurrent treatment with potentially nephrotoxic agents

- younger age in children

- reduced nephron reserve as in patients with renal tumours and those having undergone renal radiation or unilateral nephrectomy.

Urothelial Effects

Ifosfamide administration is associated with urotoxic effects, which can be reduced by prophylactic use of mesna.

Haemorrhagic cystitis requiring blood transfusion has been reported with Ifosfamide.

The risk of haemorrhagic cystitis is dose-dependent and increased with administration of single high doses compared to fractionated administration.

Haemorrhagic cystitis after a single dose of Ifosfamide has been reported.

Before starting treatment, it is necessary to exclude or correct any urinary tract obstructions.

During or immediately after administration, adequate amounts of fluid should be ingested or infused to force diuresis in order to reduce the risk of urinary tract toxicity.

Ifosfamide should be used with caution, if at all, in patients with active urinary tract infections.

Past or concomitant radiation of the bladder or busulfan treatment may increase the risk for haemorrhagic cystitis.

Haemorrhagic cystitis after a single dose of Ifosfamide has been reported.

Before starting treatment, it is necessary to exclude or correct any urinary tract obstructions.

During or immediately after administration, adequate amounts of fluid should be ingested or infused to force diuresis in order to reduce the risk of urinary tract toxicity.

Ifosfamide should be used with caution, if at all, in patients with active urinary tract infections.

Past or concomitant radiation of the bladder or busulfan treatment may increase the risk for haemorrhagic cystitis.

Haemorrhagic cystitis after a single dose of Ifosfamide has been reported.

Before starting treatment, it is necessary to exclude or correct any urinary tract obstructions.

During or immediately after administration, adequate amounts of fluid should be ingested or infused to force diuresis in order to reduce the risk of urinary tract toxicity.

Ifosfamide should be used with caution, if at all, in patients with active urinary tract infections.

Past or concomitant radiation of the bladder or busulfan treatment may increase the risk for haemorrhagic cystitis.

Haemorrhagic cystitis after a single dose of Ifosfamide has been reported.

Before starting treatment, it is necessary to exclude or correct any urinary tract obstructions.

During or immediately after administration, adequate amounts of fluid should be ingested or infused to force diuresis in order to reduce the risk of urinary tract toxicity.

Ifosfamide should be used with caution, if at all, in patients with active urinary tract infections.

Past or concomitant radiation of the bladder or busulfan treatment may increase the risk for haemorrhagic cystitis.

Haemorrhagic cystitis after a single dose of Ifosfamide has been reported.

Before starting treatment, it is necessary to exclude or correct any urinary tract obstructions.

During or immediately after administration, adequate amounts of fluid should be ingested or infused to force diuresis in order to reduce the risk of urinary tract toxicity.

Ifosfamide should be used with caution, if at all, in patients with active urinary tract infections.

Past or concomitant radiation of the bladder or busulfan treatment may increase the risk for haemorrhagic cystitis.

Haemorrhagic cystitis after a single dose of Ifosfamide has been reported.

Before starting treatment, it is necessary to exclude or correct any urinary tract obstructions.

During or immediately after administration, adequate amounts of fluid should be ingested or infused to force diuresis in order to reduce the risk of urinary tract toxicity.

Ifosfamide should be used with caution, if at all, in patients with active urinary tract infections.

Past or concomitant radiation of the bladder or busulfan treatment may increase the risk for haemorrhagic cystitis.

Haemorrhagic cystitis after a single dose of Ifosfamide has been reported.

Before starting treatment, it is necessary to exclude or correct any urinary tract obstructions.

During or immediately after administration, adequate amounts of fluid should be ingested or infused to force diuresis in order to reduce the risk of urinary tract toxicity.

Ifosfamide should be used with caution, if at all, in patients with active urinary tract infections.

Past or concomitant radiation of the bladder or busulfan treatment may increase the risk for haemorrhagic cystitis.

Haemorrhagic cystitis after a single dose of Ifosfamide has been reported.

Before starting treatment, it is necessary to exclude or correct any urinary tract obstructions.

During or immediately after administration, adequate amounts of fluid should be ingested or infused to force diuresis in order to reduce the risk of urinary tract toxicity.

Ifosfamide should be used with caution, if at all, in patients with active urinary tract infections.

Past or concomitant radiation of the bladder or busulfan treatment may increase the risk for haemorrhagic cystitis.

Haemorrhagic cystitis after a single dose of Ifosfamide has been reported.

Before starting treatment, it is necessary to exclude or correct any urinary tract obstructions.

During or immediately after administration, adequate amounts of fluid should be ingested or infused to force diuresis in order to reduce the risk of urinary tract toxicity.

Ifosfamide should be used with caution, if at all, in patients with active urinary tract infections.

Past or concomitant radiation of the bladder or busulfan treatment may increase the risk for haemorrhagic cystitis.</